Бериллий.

SLogin

Бериллий.

berilliyБериллий (лат. Beryllium), Be, химический элемент II группы периодической системы Менделеева, атомный номер 4, атомная масса 9,0122; легкий светло-серый металл. Имеет один стабильный изотоп Ве.
Бериллий открыт в 1798 году в виде оксида ВеО, выделенной из минерала берилла Л. Вокленом. Металлический Бериллий впервые получили в 1828 году Ф. Велер и А. Бюсси независимо друг от друга. Так как некоторые соли Бериллия сладкого вкуса, его вначале называли "глюциний" (от греч. glykys - сладкий) или "глиций". Название Glicinium употребляется (наряду с Бериллием) только во Франции. Применение Бериллия началось в 40-х годах 20 века, хотя его ценные свойства как компонента сплавов были обнаружены еще ранее, а замечательные ядерные - в начале 30-х годов 20 века.

Распространение бериллия в природе.

Бериллий - редкий элемент. Бериллий - типичный литофильный элемент, характерный для кислых, субщелочных и щелочных магм. Известно около 40 минералов Бериллия. Из них наибольшее практическое значение имеет берилл, перспективны и частично используются фенакит, гельвин, хризоберилл, бертрандит.
Физические свойства. Кристаллическая решетка Бериллия гексагональная плотноупакованная. Бериллий легче алюминия, его плотность 1847,7 кг/м3 (у Аl около 2700 кг/м3), температура плавления 1285оС, температура кипения 2470 oС.

Химические свойства.

В химических соединениях Бериллий 2-валентен (конфигурация внешних электронов 2S2). Бериллий обладает высокой химической активностью, но компактный металл устойчив на воздухе благодаря образованию тонкой и прочной пленки оксида ВеО. При нагревании выше 800 oС быстро окисляется. С водой до 100 oС Бериллий практически не взаимодействует.

Легко растворяется в плавиковой, соляной, разбавленной серной кислотах, слабо реагирует с концентрированной серной и разбавленной азотной кислотами и не реагирует с концентрированной азотной. Растворяется в водных растворах щелочей, образуя соли бериллаты, например Na2BeO2.
При комнатной температуре реагирует с фтором, а при повышенных - с других галогенами и сероводородом. Бериллий взаимодействует с азотом при температуре выше 650 оС с образованием нитрида Be3N2 и при температуре выше 1200 оС с углеродом, образуя карбид Ве2С. С водородом практически не реагирует во всем диапазоне температур.
Гидрид Бериллия получен при разложении бериллийорганических соединений и устойчив до 240 оС.
При высоких температурах Бериллий взаимодействует с большинством металлов, образуя бериллиды; с алюминием и кремнием дает эвтектические сплавы.
Растворимость примесных элементов в Бериллии чрезвычайно мала.
Мелкодисперсный порошок Бериллия сгорает в парах серы, селена, теллура. Расплавленный Бериллий взаимодействует с большинством оксидов, нитридов, сульфидов и карбидов. Единственно пригодным материалом тиглей для плавки Бериллия служит оксид бериллия.
Гидрооксид Be(OH)2 - слабое основание с амфотерными свойствами. Соли Бериллия сильно гигроскопичны и за небольшим исключением (фосфат, карбонат) хорошо растворимы в воде, их водные растворы вследствие гидролиза имеют кислую реакцию.
Фторид BeF2 с фторидами щелочных металлов и аммония образует фторбериллаты, например Na2BeF4, имеющие большое промышленное значение. Известен ряд сложных бериллийорганических соединений, гидролиз и окисление некоторых из них протекают со взрывом.

Получение Бериллия.

В промышленности металлический Бериллий и его соединения получают переработкой берилла в гидрооксид Ве(ОН)2 или сульфат BeSO4.
По одному из способов, измельченный берилл спекают с Na2SiF6, образующиеся фторбериллаты натрия Na2BeF4 и NaBeF3 выщелачивают из смеси водой; при добавлении к этому раствору NaOH в осадок выпадает Ве(ОН)2. По другому способу, берилл спекают с известью или мелом, спек обрабатывают серной кислотой; образующийся BeSO4 выщелачивают водой и осаждают аммиаком Ве(ОН)2. Более полная очистка достигается многократной кристаллизацией BeSO4, из которого прокаливанием получают ВеО.
Известно также вскрытие берилла хлорированием или действием фосгена. Дальнейшая обработка ведется с целью получения BeF2 или ВеCl2.
Металлический Бериллий получают восстановлением BeF2 магнием при 900-1300°С или электролизом ВеСl2 в смеси с NaCl при 350 oС.
Полученный металл переплавляют в вакууме. Металл высокой чистоты получают дистилляцией в вакууме, а в небольших количествах - зонной плавкой, применяют также электролитическое рафинирование.
Из-за трудностей получения качественных отливок заготовки для изделий из Бериллия готовят методами порошковой металлургии. Бериллий измельчают в порошок и подвергают горячему прессованию в вакууме при 1140-1180 oС. Прутки, трубы и другие профили получают выдавливанием при 800-1050 oС (горячее выдавливание) или при 400-500 oС (теплое выдавливание). Листы из Бериллия получают прокаткой горячепрессованных заготовок или выдавленных полос при 760-840 oС.
Применяют и других виды обработки - ковку, штамповку, волочение. При механической обработке Бериллия пользуются твердосплавным инструментом.

Применение Бериллия.

Сочетание малой атомной массы, малого сечения захвата тепловых нейтронов и удовлетворительной стойкости в условиях радиации делает Бериллий одним из лучших материалов для изготовления замедлителей и отражателей нейтронов в атомных реакторах. В Бериллии выгодно сочетаются малая плотность, высокий модуль упругости, прочность, теплопроводность. По удельной прочности Бериллий превосходит все металлы. Благодаря этому в конце 50 - начале 60-х годов Бериллий стали применять в авиационной, ракетной и космической технике и гироприборостроении. Однако высокая хрупкость Бериллия при комнатной температуре - главное препятствие к его широкому использованию как конструкционного материала. Бериллий входит в состав сплавов на основе Al, Mg, Cu и других цветных металлов.
Некоторые бериллиды тугоплавких металлов рассматриваются как перспективные конструкционные материалы в авиа- и ракетостроении. Бериллий применяется также для поверхностной бериллизации стали. Из Бериллия изготовляют окна рентгеновских трубок, используя его высокую проницаемость для рентгеновских лучей (в 17 раз большую, чем у алюминия). Бериллий применяется в нейтронных источниках на основе радия, полония, актиния, плутония, так как он обладает свойством интенсивного излучения нейтронов при бомбардировке ?-частицами. Бериллий и некоторые его соединения рассматриваются как перспективное твердое ракетное топливо с наиболее высокими удельными импульсами.
Широкое производство чистого Бериллия началось после 2-й мировой войны.
Переработка Бериллия осложняется высокой токсичностью летучих соединений и пыли, содержащей Бериллий, поэтому при работе с Бериллием и его соединениями нужны специальные меры защиты.

Бериллий в организме.

Бериллий присутствует в тканях многих растений и животных. У животных Бериллий распределяется во всех органах и тканях. Около 50% усвоенного животным Бериллия выделяется с мочой, около 30% поглощается костями, 8% обнаружено в печени и почках. Биологическое значение Бериллий мало выяснено; оно определяется участием Бериллий в обмене Mg и Р в костной ткани. При избытке в рационе Бериллия происходит связывание в кишечнике ионов фосфорной кислоты в неусвояемый фосфат Бериллия. Активность некоторых ферментов (щелочной фосфатазы, аденозинтрифосфатазы) тормозится малыми концентрациями Бериллия. Под влиянием Бериллия при недостатке фосфора развивается не излечиваемый витамином D бериллиевый рахит, встречаемый у животных в биогеохимических провинциях, богатых Бериллием.

 

 

Рекомендации вкаментс.

Адсенсе адаптивный вниз.

Поделится от шареплюсо.